Day558.栈 -数据结构和算法Java
家电修理 2023-07-16 19:16www.caominkang.com电器维修
栈 一、基本介绍 二、通过数组实现栈结构 1、思路分析图 2、代码实现
public class ArrayStackDemo {
public static void main(String[] args) {
ArrayStack arrayStack = ne ArrayStack(3);
arrayStack.push(1);
arrayStack.push(2);
arrayStack.push(3);
arrayStack.list();
System.out.println("====");
arrayStack.pop();
arrayStack.list();
}
}
class ArrayStack{
private int maxSize;//栈大小
private int[] stack;//数组存放数据
private int = -1;//栈顶
public ArrayStack(int maxSize){
this.maxSize = maxSize;
this.stack = ne int[maxSize];
}
//判断栈顶,是否栈满
public boolean isFull(){
return this. == maxSize-1;
}
//判断栈,是否为空
public boolean isFree(){
return this. == -1;
}
//入栈
public void push(int value){
if (isFull()){
System.out.println("栈满了");
return;
}
++;
stack[] = value;
}
//出栈
public int pop(){
if (isFree()){
thro ne RuntimeException("栈为空");
}
int vale = stack[];
--;
return vale;
}
//显示栈
public void list(){
if (isFree()){
thro ne RuntimeException("栈为空");
}
//反向遍历
for (int i = ; i >=0; i--) {
System.out.println(stack[i]);
}
}
}
三、前缀/中缀/后缀表达式 1、前缀表达式
四、栈实现综合计算器(中缀表达式) 1、只能处理单位数的版本
以下的实现方式无法处理多位数的情况
package .achang.stack;
public class Calculator {
public static void main(String[] args) {
//表达式
String expression = "3+26-3";
//创建两个栈,一个是数栈,一个是表达式栈
ArrayStack2 numStack = ne ArrayStack2(10);
ArrayStack2 operStack = ne ArrayStack2(10);
//定义需要的相关变量
int index = 0;//用于扫描表达式的索引
int num1 = 0;
int num2 = 0;
int oper = 0;
int result = 0;
char ch = ' ';//将每次扫描的得到的char保存到ch中
hile (true) {
//依次得到expression中每一个字符
ch = expression.substring(index, index + 1).charAt(0);
//判断ch是什么来做相应的处理
if (operStack.isOper(ch)) {//【如果是运算符】
//判断符号栈是否为空
if (operStack.isFree()) {
operStack.push(ch);
} else {
//如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于符号栈中的操作符,就需要从数栈中pop两个数,
//在从符号栈中pop一个符号,进行运算,计算出结果,并将结果push到数栈中,然后把当前的操作符加入到符号栈中
if (operStack.rank(ch) <= operStack.rank(operStack.peek())) {
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
result = numStack.calculate(num1, num2, oper);
numStack.push(result);
operStack.push(ch);
} else {
//如果当前的操作符优先级大于栈中的操作符,就直接入符号栈
operStack.push(ch);
}
}
} else {//【如果是数字】
numStack.push(ch - 48);//将ASCII玛的数字转为对应的数值
}
//让index+1,并判断是否扫描到expression了
index++;
if (index >= expression.length()){
break;
}
}
//当表达式扫描完毕后,就顺序从数栈和符号栈中pop出相应的数和符号,并运行
hile (true){
//如果符号栈为空,则计算结束,数栈中只有一个数字,且是计算的结果
if (operStack.isFree()){
break;
}
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
result = numStack.calculate(num1, num2, oper);
numStack.push(result);
}
System.out.printf("表达式 %s = %d",expression,numStack.pop());
}
}
//栈
class ArrayStack2 {
private int maxSize;//栈大小
private int[] stack;//数组存放数据
private int = -1;//栈顶
public ArrayStack2(int maxSize) {
this.maxSize = maxSize;
this.stack = ne int[maxSize];
}
//查看栈顶的元素,但不弹出栈
public int peek() {
return stack[];
}
//返回运算符优先级,优先级越大,数字越大
public int rank(int oper) {
if (oper == '' || oper == '/') {
return 1;
} else if (oper == '+' || oper == '-') {
return 0;
} else {
return -1;//目前假定只有 +-/符号
}
}
//判断是否是运算符
public boolean isOper(char val) {
return val == '+' || val == '-' || val == '/' || val == '';
}
//计算方法
public int calculate(int num1, int num2, int oper) {
int result = 0;
sitch (oper) {
case '+':
result = num1 + num2;
break;
case '-':
result = num2 - num1;
break;
case '':
result = num1 num2;
break;
case '/':
result = num2 / num1;
break;
}
return result;
}
//判断栈顶,是否栈满
public boolean isFull() {
return this. == maxSize - 1;
}
//判断栈,是否为空
public boolean isFree() {
return this. == -1;
}
//入栈
public void push(int value) {
if (isFull()) {
System.out.println("栈满了");
return;
}
++;
stack[] = value;
}
//出栈
public int pop() {
if (isFree()) {
thro ne RuntimeException("栈为空");
}
int vale = stack[];
--;
return vale;
}
//显示栈
public void list() {
if (isFree()) {
thro ne RuntimeException("栈为空");
}
//反向遍历
for (int i = ; i >= 0; i--) {
System.out.println(stack[i]);
}
}
}
2、多位数处理
package .achang.stack;
public class Calculator {
public static void main(String[] args) {
//表达式
String expression = "30+26-3";
//创建两个栈,一个是数栈,一个是表达式栈
ArrayStack2 numStack = ne ArrayStack2(10);
ArrayStack2 operStack = ne ArrayStack2(10);
//定义需要的相关变量
int index = 0;//用于扫描表达式的索引
int num1 = 0;
int num2 = 0;
int oper = 0;
int result = 0;
char ch = ' ';//将每次扫描的得到的char保存到ch中
String keepNum = "";//用过拼接多位数
hile (true) {
//依次得到expression中每一个字符
ch = expression.substring(index, index + 1).charAt(0);
//判断ch是什么来做相应的处理
if (operStack.isOper(ch)) {//【如果是运算符】
//判断符号栈是否为空
if (operStack.isFree()) {
operStack.push(ch);
} else {
//如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于符号栈中的操作符,就需要从数栈中pop两个数,
//在从符号栈中pop一个符号,进行运算,计算出结果,并将结果push到数栈中,然后把当前的操作符加入到符号栈中
if (operStack.rank(ch) <= operStack.rank(operStack.peek())) {
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
result = numStack.calculate(num1, num2, oper);
numStack.push(result);
operStack.push(ch);
} else {
//如果当前的操作符优先级大于栈中的操作符,就直接入符号栈
operStack.push(ch);
}
}
} else {//【如果是数字】
//numStack.push(ch - 48);//将ASCII玛的数字转为对应的数值
keepNum += ch;
//如果ch已经是expression的一位,则直接入栈
if (index == expression.length() - 1) {
numStack.push(Integer.parseInt(keepNum));
} else {
//判断下一个字符是不是数字,如果是数字,则继续扫描,如果是运算符,则入数栈
//往后面看一位,不是index++
if (operStack.isOper(expression.substring(index + 1, index + 2).charAt(0))) {
//如果后一位是运算符,则入栈
numStack.push(Integer.parseInt(keepNum));
keepNum = "";//清空
}
}
}
//让index+1,并判断是否扫描到expression了
index++;
if (index >= expression.length()) {
break;
}
}
//当表达式扫描完毕后,就顺序从数栈和符号栈中pop出相应的数和符号,并运行
hile (true) {
//如果符号栈为空,则计算结束,数栈中只有一个数字,且是计算的结果
if (operStack.isFree()) {
break;
}
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
result = numStack.calculate(num1, num2, oper);
numStack.push(result);
}
System.out.printf("表达式 %s = %d", expression, numStack.pop());
}
}
//栈
class ArrayStack2 {
private int maxSize;//栈大小
private int[] stack;//数组存放数据
private int = -1;//栈顶
public ArrayStack2(int maxSize) {
this.maxSize = maxSize;
this.stack = ne int[maxSize];
}
//查看栈顶的元素,但不弹出栈
public int peek() {
return stack[];
}
//返回运算符优先级,优先级越大,数字越大
public int rank(int oper) {
if (oper == '' || oper == '/') {
return 1;
} else if (oper == '+' || oper == '-') {
return 0;
} else {
return -1;//目前假定只有 +-/符号
}
}
//判断是否是运算符
public boolean isOper(char val) {
return val == '+' || val == '-' || val == '/' || val == '';
}
//计算方法
public int calculate(int num1, int num2, int oper) {
int result = 0;
sitch (oper) {
case '+':
result = num1 + num2;
break;
case '-':
result = num2 - num1;
break;
case '':
result = num1 num2;
break;
case '/':
result = num2 / num1;
break;
}
return result;
}
//判断栈顶,是否栈满
public boolean isFull() {
return this. == maxSize - 1;
}
//判断栈,是否为空
public boolean isFree() {
return this. == -1;
}
//入栈
public void push(int value) {
if (isFull()) {
System.out.println("栈满了");
return;
}
++;
stack[] = value;
}
//出栈
public int pop() {
if (isFree()) {
thro ne RuntimeException("栈为空");
}
int vale = stack[];
--;
return vale;
}
//显示栈
public void list() {
if (isFree()) {
thro ne RuntimeException("栈为空");
}
//反向遍历
for (int i = ; i >= 0; i--) {
System.out.println(stack[i]);
}
}
}
五、逆波兰计算器(后缀表达式)
package .achang.stack;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
//定义一个逆波兰表达式
//( 3 + 4 ) 5 - 6 = 3 4 + 5 6 -
String suffixexpression = "3 4 + 5 6 -";
List strings = toList(suffixexpression);
System.out.println(calculate(strings));
}
//将逆波兰表达式,转成一个ArrayList
public static List toList(String suffixexpression){
if (Objects.equals(suffixexpression, "")){
return null;
}
String[] split = suffixexpression.split(" ");
return Arrays.asList(split);
}
//逆波兰表达式的运算
public static int calculate(List list){
Stack stack = ne Stack<>();
for (String item : list) {
//判断正则表达式取出数
if (item.matches("\d+")){//匹配多位数
//入栈
stack.push(item);
}else {//运算符
int num1 = Integer.parseInt(stack.pop());
int num2 = Integer.parseInt(stack.pop());
int result = 0;
sitch (item) {
case "+":
result = num1 + num2;
break;
case "-":
result = num2 - num1;
break;
case "":
result = num1 num2;
break;
case "/":
result = num2 / num1;
break;
default:
thro ne RuntimeException("运算符有误");
}
stack.push(String.valueOf(result));
}
}
return Integer.parseInt(stack.pop());
}
}
六、中缀表达式—>后缀表达式 1、思路
2、代码实现
public static void main(String[] args) {
//中缀表达式 ---> 后缀表达式
// 1 + ( ( 2 + 3 ) 4 ) - 5 => 1 2 3 + 4 + 5 -
String middleexpression = "1 + ( ( 2 + 3 ) 4 ) - 5";
List lastexpressionList = getLastexpressionByMiddleexpression(middleexpression);
System.out.println(lastexpressionList);
//根据中缀表达式 ---> 后缀表达式 private static ListgetLastexpressionByMiddleexpression(String middleexpression) { List middleexpressionList = Arrays.asList(middleexpression.split(" ")); Stack s1 = ne Stack<>();//符号栈 ArrayList s2 = ne ArrayList<>(); for (String item : middleexpressionList) { if (item.matches("\d+")){//判断是否为数字 s2.add(item); }else if ("(".equals(item)){ s1.push(item); }else if (")".equals(item)){ hile (!s1.peek().equals("(")){ s2.add(s1.pop()); } s1.pop(); }else{ //当item的优先级小于等于栈顶运算符,将s1栈顶的运算符弹出压入s2,反复执行 hile (s1.size() != 0 && getValue(s1.peek()) >= getValue(item)){ s2.add(s1.pop()); } //将item压入s1栈 s1.push(item); } } //将s1中剩下的元素加入到s2中 hile (s1.size()!=0){ s2.add(s1.pop()); } return s2; } //获取运算符优先级 private static int getValue(String item) { sitch (item){ case "+": return 1; case "-": return 1; case "": return 2; case "/": return 2; default: System.out.println("该运算符不存在"); return 0; } }
空调维修
- 我的世界电脑版运行身份怎么弄出来(我的世界
- 空调抽湿是什么意思,设置抽湿的温度有什么意
- 方太燃气灶有一个打不着火 怎么修复与排查方法
- 夏季免费清洗汽车空调的宣传口号
- 清洗完空调后出现漏水现象
- iphone6能玩什么游戏(iphone6游戏)
- 如何设置电脑密码锁屏(如何设置电脑密码锁屏
- win10删除开机密码提示不符合密码策略要求
- 电脑w7显示不是正版(w7不是正版怎么解决)
- 万家乐z8热水器显示e7解决 怎么修复与排查方法
- 1匹空调多少瓦数(1匹空调多少瓦)
- 安卓手机连接电脑用什么软件好(关于安卓手机
- 电脑网页看视频卡是什么原因(爱拍看视频卡)
- 华帝燃气灶点火器一直响然后熄火怎么办:问题
- 电脑壁纸怎么换(关于电脑壁纸怎么换的介绍)
- 冬天空调的出风口应该朝什么方向(冬天空调风